Jacobi–Davidson methods for polynomial two-parameter eigenvalue problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems

We propose Jacobi–Davidson type methods for polynomial two-parameter eigenvalue problems (PMEP). Such problems can be linearized as singular two-parameter eigenvalue problems, whose matrices are of dimension k(k + 1)n/2, where k is the degree of the polynomial and n is the size of the matrix coefficients in the PMEP. When k2n is relatively small, the problem can be solved numerically by computi...

متن کامل

Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

Several recent methods used to analyze asymptotic stability of delay-differential equations (DDEs) involve determining the eigenvalues of a matrix, a matrix pencil or a matrix polynomial constructed by Kronecker products. Despite some similarities between the different types of these so-calledmatrix pencil methods, the general ideas used as well as the proofs differ considerably. Moreover, the ...

متن کامل

Two-Grid Methods for Maxwell Eigenvalue Problems

Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 70 (2001), pp. 17-25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 1287-1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the Maxwell eigenvalue proble...

متن کامل

Perturbation theory for homogeneous polynomial eigenvalue problems

We consider polynomial eigenvalue problems P(A, α, β)x = 0 in which the matrix polynomial is homogeneous in the eigenvalue (α, β) ∈ C2. In this framework infinite eigenvalues are on the same footing as finite eigenvalues. We view the problem in projective spaces to avoid normalization of the eigenpairs. We show that a polynomial eigenvalue problem is wellposed when its eigenvalues are simple. W...

متن کامل

Polynomial Optimization Problems are Eigenvalue Problems

Abstract Many problems encountered in systems theory and system identification require the solution of polynomial optimization problems, which have a polynomial objective function and polynomial constraints. Applying the method of Lagrange multipliers yields a set of multivariate polynomial equations. Solving a set of multivariate polynomials is an old, yet very relevant problem. It is little k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2015

ISSN: 0377-0427

DOI: 10.1016/j.cam.2015.04.019